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Abstract— The Muskingum model is the most widely used
method for flow routing. The effective utilisation of the routing
procedure requires the determination of optimum parameters.
The optimization of parameters in Muskingum routing method
represented in the MATLAB Simulink module is attempted by
means of different optimization procedures namely Genetic
algorithm and Least square curve fit. The procedure is developed
based on control system concept and developed using simulink
tool of MATLAB. The result of optimization indicates that the
methods can be used as an alternative way for parameter
estimation.
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. INTRODUCTION

Routing is used to predict the magnitudes, volumes, and
temporal patterns of the flow (often a flood wave) as it moves
down a channel. There are a number of conventional
simplified approaches to flow routing [1]. For example, there
is the Muskingum model with multiple inputs, multiple
regression (MR) models, and autoregressive (AR) models [1].
A considerable amount of research has been published
recently on the application of nonlinear methods in flow
simulation. A nonlinear prediction approach was applied to
multivariate flow routing and compared it successfully with
ARMAX model forecasts [2]. Due to its simplicity and modest
data requirements, the Muskingum method coming under the
category of hydrologic routing becomes the most popular and
widely used routing method. Though the method has the
inherent problem of linearity, the method finds application in
many rainfall-runoff models. The standard procedure for
applying the Muskingum method involves two basic steps:
calibration and prediction. In the calibration step, a parameter-
estimation problem is solved in which the parameter values for
the Muskingum model of a river are determined by using
historical inflow-outflow hydrograph data. The prediction step
is the solution of a routing problem in which the outflow
hydrograph for a given inflow hydrograph is determined by
using the routing equations [3].

The parameter-estimation problem has been the interest of
many researchers for a long time. A lot of studies have been
reported for the estimation of parameters of the Muskingum
model. The early method for the linear model is based on a
trial-and-error graphical approach which is considered as
obsolete due to subjective interpretation. The least-squares
method (LSM) was suggested in 1978 to solve the values of
the three parameters in the nonlinear Muskingum method [4].

The three-parameter estimation procedures was proposed in
1985 using the Hook-Jeeve (HJ) pattern search technique in
conjunction with simple linear regression (LR), the conjugate
gradient (CG), and the Davidson-Fletcher Powell (DFP)
techniques and used the state variable technique for routing[5].
The genetic algorithm (GA) was suggested in 1997 [6] and the
Lagrange multiplier in 2004 [3] for parameter estimation. The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique was
introduced in 2006 [7] etc. All these studies indicate that the
solution procedures for the parameter estimation differ in
many aspects and yield many different parameter sets for the
same data. They also indicate that the non-linear Muskingum
method for a particular reach could have many combinations
of the parameters which yield almost same level of accuracy
and hence multiple solutions exist. A representation of
Muskingum models was proposed in MATLAB Simulink
module [8]. Though the application of the model was
successful, the parameter estimation of the model, the real
advantage of such representation, was not successful in that
study.

The routing component can be conveniently represented by
a Simulink model of the Muskingum method [8]. However,
application of such model requires that the parameter
estimation should have to be carried out from the model itself.
However such procedure was not successful in the earlier
study [8]. Hence, in this study, optimization of simulink model
parameters for linear Muskingum routing, is performed
utilizing two different optimization procedures.

II. LITERATURE REVIEW

In general, there are two types of channel routing,
hydrologic routing, and hydraulic routing. Hydrologic routing
methods employ the continuity equation along with the
equation of storage [9].

Hydrologic methods can effectively reproduce flood flows
when a storage-discharge relation is calculated or routing
coefficients are fitted to the storage-discharge relation.
Muskingum routing is the most commonly used hydrologic
routing method for handling a variable discharge-storage
relationship. This method models the storage volume of
flooding in a river channel by a combination of wedge and
prism storages. During the advance of flood wave, inflow
exceeds outflow, producing a wedge of storage. During the
recession, outflow exceeds inflow resulting in a negative
wedge. In addition, there is a prism of storage which is formed
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by a volume of constant cross section along the length of the
prismatic channel [10]. There are two forms of Muskingum
method; linear and nonlinear. In linear Muskingum method,
the storage S in the routing reach is represented by the
discharge-storage equation by means of two parameters x and
k. x is a dimensionless factor that weights the influence of the
inflow and outflow hydrograph to the storage within the reach.
k is the travel time within the reach. In nonlinear form, an
additional parameter m is utilized to represent nonlinearity.

One challenge in the application of the Muskingum model
is that its parameters cannot be measured physically. There are
several methods available for parameter estimation.
Traditionally, the parameters are estimated by plotting
accumulated storage versus weighted flow of a given reach.
Three techniques to calibrate the parameters by using various
curve-fitting methods was suggested in 1985 [5]. He utilized
the Hooke-Jeeves (HJ) pattern search in conjunction with
simple linear regression (LR), the conjugate gradient (CQ),
and the Davidon-Fletcher-Powell (DFP) algorithms. The
performances of the methods were compared with Gill’s
method, and HJ+CG and HJ+DFP techniques yield better
results [7].

The objective approach of genetic algorithm was proposed
for the purpose of estimating the parameters of two nonlinear
Muskingum routing models in 1997 [6]. The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) technique, which searches
the solution area on the basis of mathematical gradients for
estimating the parameters in the nonlinear Muskingum model
as introduced in 2006 [7]. The Particle swarm optimization
(PSO) was proposed in 2009 for the parameter estimation of
the nonlinear Muskingum model [11]. The results demonstrate
that PSO can achieve a high degree of accuracy to estimate the
three parameters and these results in accurate predictions of
outflow [11].

The Differential Evolution (DE) was proposed in 2012 for
the parameter estimation of the nonlinear Muskingum model.
The performance of DE is outstanding in the parameter
estimation problem of the nonlinear Muskingum model [12].
The linear parameters of Muskingum flood routing was
determined using control system concept [8]. A Simulink
model was developed for linear Muskingum method. Then the
parameter estimation was carried out, but the results were not
promising and require further improvement. Hence, the
current study was taken up for parameter estimation using two
different approaches in the Simulink model of linear
Muskingum method.

III. DATA USED FOR OPTIMIZATION

To evaluate the performance of optimization model for
optimizing Muskingum parameters, three sets of data for
routing from, [13], [14] and [9] are used, of which the first two
sets of data had been utilized by Ref. [8]. The data consists of
a set of observed inflow and outflow values.

IV. METHODOLOGY

A. Linear Muskingum Routing Model

Muskingum method utilizes continuity equation and a
relationship connecting inflow, outflow and storage for the
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solution of routing problem. These equations in mathematical

terms can be expressed as follows [9];

Continuity equation is

S=1-0 (M)

Storage equation is

S=klxI+(1-x)Q] )

Substituting the value for S in the continuity equation

as
dat

=1-Q=k[+(1 -0 3)

. d
Then the terms are rearranged to get an equation for d—f ,
so that an integrator could provide the unknown variable Q.

1=Q _ xa
d_Q — k__ dt (4)
dt (1—-x)

This system equation thus derived above was used to
represent the model in Simulink using the various blocks from
the Simulink Library Browser. The inflow data were provided
as time series. The necessary blocks were gathered from the
library browser and arranged in the order. The various blocks
used were: from workspace, scope, derivative, constant, gain,
divide, integrator, sum blocks etc. It may be noted that the
equation is in an implicit form and has been incorporated with
a feedback connection. Appropriate blocks have been utilised
for building the right hand side of the equation and then an
integrator is used for getting the variable Q, which is then fed
back to the system. The parameters of the blocks were
modified according to the system requirement.

The inflow data could be either typed in or imported to the
MATLAB workspace [8]. A small modification is applied to
the linear model developed by [8] by removing the Mux Block
in the model which is used for combining several inputs into a
single vector output. Only the outflow (Q) obtained from the
loop was directly given to the scope. Also the values in the
blocks corresponding to x and k parameters of Muskingum
were given as X and k itself. After developing the model,
optimization of Muskingum parameters was carried out by
invoking optimization routine in the optimization toolbox of
MATLAB with necessary M-Files for objective function.
Fig.1 shows the representation of linear model in Simulink for
parameter optimization. Separate M- File is required to be
used for invoking optimization using the Simulink model for
linear method. Such a methodology was not attempted earlier.
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Fig.1 Representation of linear model in Simulink for parameter optimization

B. Optimization toolbox

Optimization Toolbox is a collection of functions
thatextend the capability of MATLAB. The Lsqcurvefit solver
and GA solver in the optimization toolbox are utilized in this
study.

1) Least Square Curve fit (Lsqcurvefit) Solver

Lsqcurvefit solver solves the nonlinear curve-fitting (data-
fitting) problems in least-squares sense. That is, with the given
input data ‘xdata’, and the observed output ‘ydata’, it find the
coefficients ‘x’ that “best-fit” the equation F(x, xdata), where
xdata and ydata are vectors and F(x, xdata) is a vector valued
function.. The solver demands certain data to be given by the
user for performing optimization. These include algorithm,
objective function, start point, xdata, ydata and the boundary
constraints (lower bound and upper bound).

2) Genetic Algorithm Solver

The genetic algorithm is a method for solving both
constrained and unconstrained optimization problems that is
based on natural selection, the process that drives biological
evolution. At each step, the genetic algorithm selects
individuals at random from the current population to be
parents and uses them to produce the children for the next
generation. Over successive generations, the population
"evolves" toward an optimal solution by means of selection
process. Like the Lsqcurvefit solver, GA solver also demands
certain inputs to be supplied by the user. These includes the
fitness function, number of variables, boundary constraints
(lower bound and upper bound) etc. Here also, the results as
described in the case of Lsqcurvefit solver can be visualized.

C. Optimization Procedure

The first step is the representation of linear Muskingum
method in Simulink. The optimization procedure adopted for
optimizing the parameters in Muskingum routing method
represented in the MATLAB Simulink module are discussed
in detail in the subsequent sections.

1) Using Lsqcurvefit Solver

The most important step in the optimization is the
formulation of objective function. A simple M-File was
created for creating the objective function. Here the
optimization was performed by finding the parameters of
Muskingum routing that best fit the equation F (v, xdata) by
least square curve fitting method. The result obtained from
simulink modelling was saved in the structure format in the
scope of the output in simulink. Also, it should be noted that
the ydata and simulink output should be of same size. The
parameters were defined in terms of a single variable “v’. Then
the ‘option’ for setting up the simulation in simulink was
defined. The simulation was performed by using ‘sim’
command. The value obtained after each simulation was
compared with the observed value and the parameter value
obtained with the best fit would yield the optimized result.
Thus the objective function formulation was completed. In the
‘Start point’, the initial guesses have to be provided.
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TABLE 1. BOUND CONSTRAINTS USED FOR DIFFERENT DATASETS

Model Dataset Parameters Lower bound Upper bound Start point
(LB) (UB) (SP)

Linear Data 1 X, k [0.1,10] [0.4 ,40] [0.25,25]
Linear Data 2 X,k [0.1,10] [0.4 ,40] [0.25,25]
Linear Data 3 X, k [0.1,10] [0.4 ,40] [0.25,25]
Non- Wilson kx m [0.01,0.2,1.5] [0.2,0.3,2.5] [0.105,0.25,2]
linear (1974)
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’Xdata’ corresponds to the inflow values of data sets given
in the structure format in the workspace of MATLAB and the
same variable name was specified here. *Ydata’ corresponds
to the observed outflow values of data sets. Constraints were
the bounds (Lower and Upper) which should be provided
according to the problem concerned. Table 1 show the bound
constraints used. The start point was taken as the average of
lower and upper bound values. The other options were left
with the default values. Then the optimization was performed
by clicking the ‘Start’.

2) Using GA Solver

The fitness function for GA was minimization of the sum
of squares of error between the observed and simulated value.
The number of variables was to be given as 2 for linear.
Constraints were only the lower and upper bound constraints.
The same upper and lower bound values as in the case of
Lsqcurvefit were provided here since the datasets were same.
The other options were left with the default values. Then the
optimization was performed by clicking the ‘Start’.

V. RESULTS AND DISCUSSIONS

For optimization of linear model, first the model was
represented in Simulink by utilizing the continuity and storage
equations [8]. The optimization process was applied to the
datasets. In Lsqcurvefit solver, the objective function was
formulated in such a way that the value obtained after each
simulation is compared with the observed value and the

bound value. i.e., the x value always obtained as lower bound
value. i.e., if the value is given as 0.0, the x value obtained as
0.0. It indicates that the parameter optimization has not been
done in proper fashion. The reason behind such behaviour has
to be ascertained. Such behaviour was not acceptable and
hence the lower bound was fixed as 0.1.

Because the genetic algorithm uses random number
generators, the algorithm returns slightly different results in
each trial. Hence, a number of trials have been performed and
the parameter values obtained corresponding to the least
objective function value was taken as the result. The fitness
function in GA was formulated in such a way that the sum of
squares of error between the observed and simulated value
should be minimum. The problem set up corresponding to
each dataset was made and optimization was run for each
dataset. Thus after optimization process, the optimized values
for x and k parameters were obtained for the datasets
considered. For dataset 1, the optimized parameter values
obtained from both the optimization procedures were the
same. Like in the previous case, it was observed that for
dataset 1, the value of ‘x’ parameter shows some tendency to
align with the lower bound value. The reason has to be
ascertained. The computed and observed hydrographs were
given in Fig.2. Table 2 shows the details of result of the
optimization in dataset 1.

TABLE II RESULT OF OPTIMIZATION IN LINEAR

parameter values corresponding to the best fit will yield the DATASET 1
optimized result. The problem set up corresponding to each
dataset was made and optimization was run for each dataset. Data Number of | Objective
Thus after optimization process, the optimized values fo? X set Method S K Iterations Function
and k parameters were obtained for all the datasets. But during Required Value
optimization, it was observed that for dataset 1, the value of
‘X’ parameter shows some tendency to align with the lower Data | Lsqcurvefit 0.1 454 7 4581

1 65

Data GA 0.1 | 454 51 4281
1 65
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Fig.2 Graphical representation of the result for dataset 1

The objective function (for Lsqcurvefit) and fitness
function (for GA) was formulated in the same manner as well
for the second set. For second dataset, ’x’ value obtained from
both the methods were same. But there was a slight difference
in ‘k’ value. The GA gave better value of objective function,
i.e., lower value of objective function. It was observed that the
computed and measured output matches very well (Fig.3).
Table 3 shows the details of result of the optimization in
dataset 2.

TABLE III. RESULT OF OPTIMIZATION IN LINEAR DATASET 2
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Fig.3 Graphical representation of the result for dataset 2

In the same manner, the optimization was run for dataset 3.
The values of parameters obtained from both the methods
were the same. The perfect match of computed and measured
discharge (Fig.4) clearly showed that the performance of
optimization was very good. Table 4 shows the details of the
result of optimization in dataset 3. It may be noted that the
optimization procedure worked well for second and third set
while it misbehaved for dataset 1. The reason behind this
behavior of the model is to be ascertained

TABLE IV. RESULT OF OPTIMIZATION IN LINEAR DATASET 3

Data Number Data Number
set Method X K of Objective set Method X K of Objective
iterations | function iterations | function
required value required value
Data | Lsqecurvefit | 0.17 | 35.1 5 15.996 Data | Lsqcurvefit | 0.239 | 13.24 7 1.157
2 7 86 3 3
Data GA 0.17 | 35.1 51 13.803 Data GA 0.239 | 13.24 51 1.157
2 7 58 3 3
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Fig.4 Graphical representation of the result for dataset 3

In order to ascertain the improper behaviour of the
optimization model while using the datasetl, discharge storage
curve was drawn for the three datasets by using the parameter
values obtained from Lsqcurvefit optimization method. The
discharge storage curve obtained for dataset 1, 2 and 3 are
shown in Fig.5, Fig.6 and Fig.7 respectively. From these
graphs, it was found that the plot for the first dataset showed
some peculiar behaviour which was different from the other
two datasets. i.e., the relationship was not linear as expected,
rather it gave non-linear relationship. The dataset 1 could not
be represented by a linear model. Under this circumstance, it
becomes essential to build the non-linear model of
Muskingum method. Hence, while applying the linear model
its applicability needs to be verified.
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Fig. 5 Discharge storage curve for dataset 1
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Fig. 6 Discharge storage curve for dataset 2
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Fig. 7 Discharge storage curve for dataset 3

VI. CONCLUSION

Optimization of parameters in Muskingum routing
methods represented in the MATLAB Simulink module was
done by means of using two different optimization procedures.
The optimization was performed on three sets of linear data.
The results obtained from both the methods were analyzed and
compared. The methodology can be extended to a situation
where there many such routing component in network of
channels and hence will be useful in practical sense.
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The following are conclusions derived from the study.

[12]

[13]

[14]

e  Muskingum linear model expressed in simulink
could also be used for parameter estimation. This
procedure, just like any other optimization for
such a purpose, alleviates the subjective
judgement in the determination of parameters of
Muskingum method (especially in the case of
graphical method).

e The Simulink representation of the model makes
the optimisation procedure handy and easy.

e The blind application of linear Muskingum model
to a non-linear dataset can lead to unrealistic
solution and hence lead to unrealistic parameters
while carrying out parameter optimization.
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